The generator matrix 1 0 1 1 1 X 1 1 X^2 1 1 0 1 1 X^2+X 1 1 X^2+X 1 1 X^2 1 1 X 1 1 X^2 1 1 0 1 1 X 1 1 0 1 1 X^2+X 1 1 X^2+X 1 1 X^2 1 1 X X X X^2 0 X X^2 X 0 X 1 1 X 1 0 X X^2 X X^2 X 0 1 1 1 1 0 X^2+X 1 1 X^2 1 X 1 0 X 1 0 1 1 X^2 X+1 1 X X^2+1 1 0 1 1 X^2+X X^2+X+1 1 X^2+X X^2+X+1 1 X^2 X+1 1 X X^2+1 1 X^2 X^2+X+1 1 0 X+1 1 X^2+X X^2+1 1 X^2 X^2+X+1 1 X 1 1 X 1 1 0 X+1 1 X^2+X X^2+1 1 X^2 X X 0 X^2 0 X^2+X X 0 X 0 0 X^2+X X^2 0 X^2 X X X^2+X X X+1 X+1 X^2+1 X^2+X+1 1 1 1 X^2+X 1 X^2 1 X X X^2+X X^2+X+1 0 0 X X^2+X X^2 X^2+X X 0 X X^2 X^2+X X^2 0 X 0 X^2 X^2+X X^2 X 0 X^2+X X^2+X X^2 X X^2 X^2 X^2 X^2+X X^2+X X X^2+X X^2+X 0 0 0 X^2+X X^2 X^2 X^2+X 0 0 X X X 0 X X X^2 X X X X X^2+X X X^2+X X X^2 X X^2 X^2+X X^2+X X X X X^2+X X^2+X X X^2+X 0 X^2 0 0 0 0 0 X^2 0 X^2 0 X^2 X^2 X^2 0 generates a code of length 83 over Z2[X]/(X^3) who´s minimum homogenous weight is 82. Homogenous weight enumerator: w(x)=1x^0+150x^82+75x^84+24x^86+1x^88+1x^96+2x^98+1x^100+1x^104 The gray image is a linear code over GF(2) with n=332, k=8 and d=164. This code was found by Heurico 1.16 in 3.28 seconds.